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Abstract Two commonly employed angular-mobility

models for describing amino-acid side-chain v1 torsion

conformation, the staggered-rotamer jump and the normal

probability density, are discussed and performance differ-

ences in applications to scalar-coupling data interpretation

highlighted. Both models differ in their distinct statistical

concepts, representing discrete and continuous angle dis-

tributions, respectively. Circular statistics, introduced for

describing torsion-angle distributions by using a universal

circular order parameter central to all models, suggest

another distribution of the continuous class, here referred to

as the elliptic model. Characteristic of the elliptic model is

that order parameter and circular variance form comple-

mentary moduli. Transformations between the parameter

sets that describe the probability density functions under-

lying the different models are provided. Numerical aspects

of parameter optimization are considered. The issues are

typified by using a set of v1 related 3J coupling constants

available for FK506-binding protein. The discrete stag-

gered-rotamer model is found generally to produce lower

order parameters, implying elevated rotatory variability in

the amino-acid side chains, whereas continuous models

tend to give higher order parameters that suggest compar-

atively less variation in angle conformations. The differ-

ences perceived regarding angular mobility are attributed

to conceptually different features inherent to the models.
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Probability density � Gaussian model � Elliptic model � Jinc

function � Bessel function � Torsion angle

conformation � Rotamer equilibria � Differential

probability � 3J � Vicinal coupling constants � Amino-acid

side chain � Protein structure � FKBP

Introduction

When increasing the resolution of a molecular model

through measurement, evaluation and interpretation of, for

example, NMR data, dynamical phenomena will invariably

be encountered at some point in the structure derivation

process. Biomolecular NMR structure determination refers,

amongst other parameters, to 3J coupling constants mea-

sured as the observable spin-system responses to varying

torsion angles (Karplus 1963). The significance of rotatory

oscillation about idealised torsion-angle geometries and

their implications with respect to the interpretation of

dynamically averaged NMR parameters was previously

recognised (Jardetzky 1980; Nagayama and Wüthrich

1981; Hoch et al. 1985).

Torsion angles, especially their temporal and spatial

value distributions within a given molecular moiety, such

as an amino-acid residue in a protein, are obtained from

coupling constants only indirectly through the application

and testing of suitable models, such that—on principle—all

data interpretation is made on the basis of inferences.

Without exception, all models for the description of tor-

sion-angle conformation and dynamics represent proba-

bility density functions of the angle, P(h). These broadly

fall into two classes, discrete and continuous distributions.

Conformational analysis on the basis of 3J coupling

constants usually begins with attempts at obtaining for the
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sought torsion parameter a single unique value that satisfies

all experimental constraints, resulting in a discrete single-

point or d distribution. A popular discrete model that

includes torsion-angle dynamics was introduced by Pachler

(1963, 1964) and involves jumps between the three ener-

getically favourable ideal staggered-rotamer states. This

model proved particularly efficient in the analysis of

amino-acid side-chain v1 torsions (Hansen et al. 1975).

Continuous probability density functions employed so

far include the uniform distribution (Nagayama and

Wüthrich 1981), the Gaussian or normal distribution (Hoch

et al. 1985; Karimi-Nejad et al. 1994; Brüschweiler and

Case 1994; Polshakov et al. 1995), as well as extensions to

the normal distribution model in the form of bimodal

(Avbelj and Baldwin 2003) or multimodal shapes, such as

the CUPID approach (Džakula et al. 1992a, b).

The present investigation is to shed light on the simi-

larities and differences between the two arguably most

popular angular-motion models employed in the interpre-

tation of data for the amino-acid side-chain torsion v1, the

Pachler model and the Gaussian model. The former being a

discrete, the latter a continuous distribution function, each

can be considered a limiting case in their own right.

Transformation between both models will be detailed, so as

to permit interconversion between the parameter sets and to

help develop a consistent picture and understanding of the

underlying molecular motional process. In practice, results

from fitting both models to the same experimental data

differ for reasons that will be addressed in the present

work.

From the above, the need arises for a measure of circular

variability that is independent of the chosen model of tor-

sion-angle dynamics. It is also an aim of the present work

to develop an alternative and improved model suitable for

describing molecular torsion-angle mobility.

Theory

Circular order parameter

One approach to expressing conformational variability is

the use of order parameters that, owing to their fractional

value range, between 0 and 100 %, facilitate grasp of the

extent of dynamical effects. Commonplace in the analysis

of spin-relaxation data are dimensionless angular order

parameters, usually signified by S2, descriptive of bond-

vector correlation in three-dimensional spherical space that

are taking on limit values of 1 and 0, respectively, for a

single static orientation and for isotropic reorientation

(Lipari and Szabo 1982a).

In J-coupling analysis, dimensionality is reduced insofar

as dihedral-angle variation is in a circular rather than

spherical context. This involves correlating difference

angles as produced by an ensemble of bond vectors pro-

jected onto a two-dimensional circle, as opposed to vec-

torial correlation on a three-dimensional sphere. Vector

motion in the spherical context (Lipari and Szabo 1982b),

if restricted to within a plane intersecting a sphere, would

result in a residual baseline of S2 = {P2(cos p/2)}2 =

0.25, as motional freedom is then deprived of one space

dimension.

A circular order parameter, R, suitable for summarising

dihedral-angle dynamics takes on a value of 1 for a single

static rotamer, and a value of 0 for complete circular

averaging. Consider an ensemble of torsions represented by

polar vectors of unit length (directors), their phases

reflecting the directions or dihedral-angle values, h. Then,

the circular order parameter is derived from the vector sum

as given by

R ¼ C2
1 þ S2

1

� �1=2 ð1Þ

with Cm and Sm the mth trigonometric moments, defined as

Cm ¼ N�1Rk cos mhk

Sm ¼ N�1Rk sin mhk

ð2Þ

where k runs over all N angle items of the distribution in a

particular torsion. Notice that the second sine and cosine

moments, S2 and C2, differ from the squares of first

moments, S2
1 and C2

1, employed in Eq. 1.

Circular mean direction and deviation

For any circular distribution in discrete angle data, esti-

mates for both mean direction and mean angular deviation,

ho and ro, respectively,1 are simultaneously obtained fol-

lowing the principle of vector addition in the complex

number plane, using the complex operator i = (-1)1/2,

R expðihoÞ ¼ N�1Rk expðihkÞ
¼ C1 þ iS1

ð3Þ

The mean direction or location of the circular distribution

is thus encoded in the phase of the sum vector, which

involves trigonometric first moments only, and is given by2

ho ¼ arctanðS1=C1Þ: ð4Þ

Descriptive of the concentration of the angles about their

mean direction is the length of the normalized sum vector,

R, as defined in Eq. 1, which is dimensionless and bounded

1 The nought subscript may designate, by virtue of its shape, the

circular statistical variables.
2 Numerical implementations usually benefit from provision in

mathematical libraries of function atan2 which takes sine and

cosine terms as separate arguments, allowing to determine the correct

quadrant into which the resultant vector falls.
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on the interval [0, 1]. The complementary quantity,

(1 - R), must then relate to the dispersion in the circular

data about their mean (Mardia 1972; MacArthur and

Thornton 1993). Various approaches have been suggested

to extract circular variance measures from R.

Circular variance according to Batschelet

Batschelet (1965, 1981) defines angular variance in direc-

tional data as

r2
B ¼ 2ð1� RÞ: ð5Þ

The factor of 2 reflects the small-angle approximation,

sinDh & Dh, where Dh = hk - ho, following which

r2
B ¼ 2ð1� N�1Rk cosðhk � hoÞÞ
¼ 2ð1� cos rBÞ

ð6Þ

rationalising the identity

R ¼ cos r ð7Þ

suggested by Janin et al. (1978) for the analysis of torsion-

angle variation. Batschelet’s approach makes no assump-

tion regarding the shape of the circular distribution and,

therefore, works with any discrete dataset, such as, in the

present case, a distribution of staggered v1 torsion-angle

rotamers.

Circular variance according to Mardia

Conceptually different, Mardia (1972) assumes the circular

distribution to be characterised by a continuous Normal or

Gaussian distribution, whose width parameter or standard

deviation is that abscissa at which the probability density

equals e-1/2 of its maximum value assumed to be located at

the origin. Then, the corresponding sum-vector length, i.e.,

the order parameter, identifies with

R ¼ expð�r2
M=2Þ; ð8Þ

and angular variance in the Gaussian context equates to

r2
M ¼ �2 lnðRÞ: ð9Þ

Notice that circular variance as given by Batschelet

remains finite on the interval [0, 2], whereas that given by

Mardia diverges to infinity for R ? 0.

Circular variance in wrapped normal distributions

Mardia’s approach seeks to impose Gaussian statistics for the

linear case onto the circle. The circular equivalent of expand-

ing the exponential function into a series of terms involves a

series of (symmetrical) cosine functions which automatically

take wrapping effects into account. Regarding circular

variance measures, the properties of the respective model,

known as the wrapped normal distribution (Fisher 1993), are

virtually identical to that of the linear Gaussian model.

Truncating the cosine-series expansion in the wrapped

normal distribution after the first cosine mode yields the so-

called cardioid distribution (Jeffreys 1961). This being

essentially a simplified model, its discussion is implicit in

that of the parent.

Circular variance according to Hyberts

Hyberts et al. (1992) suggested an entirely empirical rela-

tionship between the order parameter and a circular stan-

dard deviation, which they define as

rH ¼ 2 arccosð1þ 0:5 ln RÞ: ð10Þ

For small values of R (designated S in their original paper),

this circular standard deviation trends toward infinity. The

authors argue that ‘‘the angular order parameter is a better

quantity to describe the precision of dihedral angles than a

standard deviation. For a completely random angle distri-

bution the standard deviation of the angles is not defined.’’

Indeed, referring to the model of Eq. 10, rH is undefined if

R = 0.

The circular uniform distribution

The obvious model of a completely random angle distri-

bution is the circular uniform distribution. Representing a

limiting case, the circular uniform distribution has an order

parameter of zero and—by definition—its circular standard

deviation is infinite. All directions being equally likely,

P = (2p)-1, the impossibility of fitting any direction

parameter leaves the circular uniform of no further prac-

tical use than as a null model against which to test other

distributions (Fisher 1993).

Circular variance from trigonometric moments

It is here suggested to obtain the circular variance, r2
o, by an

approach motivated entirely by the definition of variance on

the basis of statistical moments. Trigonometric moments as

given in Eq. 2 are the sample analogues of the coefficients in

the Fourier series expansion of the circular probability den-

sity. Variance—in circular as well as linear statistics—would

generally be obtained from the second moment of the distri-

bution, taken away the mean-square magnitude, as follows

r02o ¼ l02 � l021

¼ N�1Rk expði2hkÞ � N�2fRk expðihkÞg2

¼ Q2 expði2hoÞ � fR expðihoÞg2

¼ Q2 � R2
� �

expði2hoÞ

ð11Þ
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The factor Q2 is only temporarily introduced to distinguish

sum-vector shortening related to the second moment from that

due to the first moment, as both are unlikely identical. Thus,

circular variance manifests in a length difference between

resultant vectors obtained from averaging over single-angle

and double-angle terms, modulated with an angular frequency

corresponding to twice the phase of the mean direction.

Following statistical theorems that the mean minimizes

the variance, the net effect arising from the average loca-

tion is yet to be eliminated from Eq. 11. Typically a

complex number, any standard deviation according to

Eq. 11 therefore remains incomplete until including the

‘mirror-image’ moments to which circular data naturally

give rise. Employing products between complex numbers

and their complex conjugates (signified by asterisk), rather

than straight squares, ensures real values result for both the

second moment and the squared first moment,

r2
o ¼ l0�2 � l01l

0�
1 : ð12Þ

Referring to Eq. 3, the mean-square magnitude is obtained

as

l01l
0�
1 ¼ N�2Rk expðihkÞRk expð�ihkÞ
¼ R expðihoÞR� expð�ihoÞ
¼ R2

ð13Þ

and the completed second moment is the auto-correlation

l0�2 ¼ N�1RkfexpðihkÞ expð�ihkÞg
¼ 1

ð14Þ

Eventually, the circular variance is given (in rad2) as

r2
o ¼ 1� R2 ¼ ð1þ RÞð1� RÞ ð15Þ

and the (squared) circular order parameter as

R2 ¼ 1� r2
o ¼ ð1þ roÞð1� roÞ ð16Þ

Reminiscent of a semicircle function, henceforth referred

to as the elliptic model, the circular standard deviation (in

rad) and the (dimensionless) circular order parameter form

a pair of complementary moduli. As R2 is proportional to

cos2ro (Eq. 7), so is (1 - R2) proportional to sin2ro.

Notice that Eq. 15 resembles Eq. 5, except the fixed

factor of 2 is replaced by the variable term (1 ? R), which,

departing from 2, dies away with increasing dispersion,

effectively removing the small-angle assumption made in

Batschelet’s approach.

Applying Eq. 8, the Gaussian variance maps onto the

circular variance of Eq. 15 according to

r2
o ¼ 1� expð�r2

MÞ ð17Þ

and, conversely, the Gaussian variance (Eq. 9) is obtained

from the circular variance using

r2
M ¼ � lnð1� r2

oÞ: ð18Þ

Clearly, the Gaussian variance, which is appropriate for the

linear case, and the circular variance suggested in the

present work differ somewhat and deserve more detailed

comparison by example.

Circular variance in the two-state exchange case

Following the concepts just outlined, standard deviations

were calculated for a two-site jump between discrete angle

states, represented by a pair of directions on the circle

deliberately centered at zero location, while incrementing

separation half-angle Dh (Fig. 1).

Averaging in this two-state case essentially amounts to

taking the sum of a complex number and its complex

conjugate, corresponding to locations ?Dh and -Dh,

respectively. The farthest two directions can be placed

apart is at p separation. Due to the then vanishing magni-

tude of R, the mean direction must remain undefined in this

special case, which is plausible and intuitively appropriate.

For combinations of two equally populated torsion-

angle states separated by 2Dh = 120�, for example, aver-

aging any two out of the three possible staggered-rotamer

states in an aliphatic hydrocarbon moiety, the resultant

mean direction between the two populated directions is the

exact antipode of the unoccupied third direction. In these

situations, rB takes a value of 1 rad or 57.3� as the order

parameter R = 0.5, whereas the Gaussian deviation, rM,

would be larger at 67.5�, and the circular deviation of the

elliptic model, ro, would be smaller at 49.6� (Table 1).

Circular variance in the rotatory averaging case

In the absence of angular variation, R = 1 and ro = 0 holds

for all models. However, the models differ in the other

extreme of complete circular averaging, when R = 0.

Standard deviations according to Mardia, rM, or Hyberts, rH,

become infinite, whereas Batschelet’s deviation, rB, reaches

its maximum of H2 rad (Eq. 5), or just above 81�.

Decreasing R also increases the mean circular deviation in

the elliptic model (Eq. 15), however, ro falls progressively

short of rB, until, in the limit, at R = 0, a variance of 1 rad2 is

obtained, just half the value of Batschelet’s variance.

As R approaches zero, singularities in the models by

Mardia or Hyberts cause infinite slopes, dr/dR. This con-

trasts Batschelet’s and the linear model, both of which

share the feature of a defined finite slope at R = 0,

equaling -1/H2 and -H2, respectively, suggesting resid-

ual propensity for r to rise as if the angle range were to

extend beyond full circle (Fig. 1). The mean deviation in

the elliptic model, ro, however, meets the point R = 0 with

zero slope. This seems most plausible, because circular
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variance cannot possibly increase any further once all

directions are populated, and no propensity for increase

ought to remain either.

It may be remarked that outliers do not really exist in

circular statistics, a fact that naturally imposes bounds on

distribution spreads.

Circular variance in the three-state exchange case

Amino-acid side-chain conformation is often analyzed under

the premise of three staggered torsion-angle rotamer states

being present at v1 = -60�, ?60�, and ±180� (Pachler 1963,

1964), signified as gauche? (g?), gauche- (g-), and trans

(t) conformations (Janin et al. 1978), respectively.3 Whether

continuous or discrete, two parameters are necessary to

model either a Gaussian distribution about a mean torsion

angle or, alternatively, a set of probabilities associated with

the fixed, staggered rotamers. Thus, both models are of

identical complexity and supposedly exploit the available

experimental information equally. Both models interconvert

as follows.

Discrete ? continuous model transformation

Equate both probability density models at the level of the

torsion angle distribution and claim that

expðiho � r2
M=2Þ ¼ Pgþ expð�ip=3Þ þ Pg� expðip=3Þ

þ Pt expðipÞ ð19Þ

The right-hand-side constitutes a weighted sum of fixed

directions, the exponential components being given constants,

such that, using Eq. 8, the apparent mean direction and mean

deviation of an equivalent circular normal distribution are

obtained from the probabilities only,
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Fig. 1 Comparison of circular standard deviation measures for a two-

site conformational exchange process involving dihedral-angle reori-

entation by ±Dh degrees. Notice that ±60� corresponds to a jump

between two staggered amino-acid side-chain rotamers. Circular

standard deviations obtained according to concepts by Batschelet,

Mardia, Hyberts, and this work, all connect through a concept-

independent, dimensionless order parameter, R, as detailed in the text.

The standard deviation corresponding to linear statistics is also

shown. a Circular standard deviation in degrees or radians versus

reorientation half angle. b Circular standard deviation in degrees or

radians versus circular order parameter. Mapping of an order

parameter is exemplified for an R value of 0.596, as fitted for the

Asn43 side chain in FKBP, yielding Gaussian and elliptic standard

deviations of 58.3� and 46.0�, respectively. The elliptic function

obtained according to the approach suggested in the present study

demonstrates the complementary-modulus property, R2 ? ro
2 = 1

3 Pachler chose the rotatory sense of substituent placement opposite

to the convention later recommended by the IUPAC-IUB (1970), and

Janin et al. chose an opposite angle convention, explaining apparent

sign inconsistencies.
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R expðihoÞ ¼ Pgþð1� i
p

3Þ=2þ Pg�ð1þ i
p

3Þ=2� Pt

ð20Þ

To eliminate any one of the three interdependent probability

parameters, most conveniently and merely for symmetry

reasons, we choose the substitution Pt ¼ 1� Pg� � Pgþ , and

obtain

sin ho ¼ ð31=2=2ÞðPg� � PgþÞ
cos ho ¼ ð3=2ÞðPg� þ PgþÞ � 1

ð21Þ

The composite probabilities Pg� þ Pgþ
� �

and Pg� � Pgþ
� �

,

respectively, determine the proportion complementary to

the trans rotamer and the balance between the two gauche

rotamers, the latter representing circular anisotropy. The

apparent mean direction in the context of the continuous

normal distribution then results from (compare Eq. 4)

tan ho ¼ sin ho= cos ho

¼ ðPg� � PgþÞ 31=2ðPg� þ PgþÞ � 0:5
n o�1 ð22Þ

If Eq. 22 represents the phase or direction of a polar, then

its modulus or length, i.e., the order parameter, expressed

in terms of the probability parameters, is given by

R ¼ 1þ 3 Pg�
2 þ Pgþ

2 � Pg� � Pgþ þ Pg�Pgþ
� �� �1=2

ð23Þ

For any uniquely occupied single-rotamer state, Pgþ ¼ 1

and Pg� ¼ 0, say, R = 1, as expected. For equal occu-

pancies, Pgþ ¼ Pg� ¼ 1=3, i.e., complete ‘rotational’

averaging, R = 0. For any two-site jump between equally

populated staggered states, such as Pgþ ¼ Pg� ¼ 1=2,

R = 0.5, consistent with the previous section (Table 1). It

is noted though that many other distributions would also

give rise to an order parameter of 0.5, for example,

Gaussian-type models including skewness or kurtosis.

Continuous ? discrete model transformation

By reversing Eqs. 22 and 23, ho and ro transform into

apparent staggered-rotamer probabilities once the inter-

mediary circular order parameter R is available (e.g.,

from Eq. 8 in the context of a normal distribution),

according to

Pgþ ¼ 1=3ð1þ R cos ho � 31=2R sin hoÞ
Pg� ¼ 1=3ð1þ R cos ho þ 31=2R sin hoÞ

Pt ¼ 1� Pgþ � Pg�

ð24Þ

Table 1 Mean directions from staggered-rotamer equilibria and circular standard deviations within various statistical frameworks

Case Pgþ Pt Pg� R ho ± ro rB rM rH

Single state

1 0 0 1 -60 ± 0 0 0 0

0 1 0 180 ±

0 0 1 ?60 ±

2-State jump, 2:1 occupancies

2/3 0 1/3 0.5774a -30 ± 46.8 52.7 60.1 56.5

2/3 1/3 0 -90 ±

1/3 2/3 0 -150 ±

0 2/3 1/3 ?150 ±

0 1/3 2/3 ?90 ±

1/3 0 2/3 ?30 ±

2-State jump, 1:1 occupancies

1/2 1/2 0 0.5 -120 ± 49.6 57.3b 67.5 63.7

1/2 0 1/2 0 ±

0 1/2 1/2 ?120 ±

3-State jump, uniform occupancies, rotational average

1/3 1/3 1/3 0 n/d ± 57.3b 81.0c ? n/d

Circular mean directions ho and deviations r (in degrees) following transformations described in the text: ro (Eq. 15), rB (Eq. 5), rM (Eq. 9), rH

(Eq. 10), and R (Eq. 1)

n/d not defined
a Equates to 1/H3
b Equates to 1 rad
c Equates to H2 rad
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Application to NMR data

Coupling constant averaging

To delineate conformation averaged J coupling constants,

appropriate expressions can be substituted for the various

terms in the original Karplus equation (Karplus 1963),

3JðhÞ ¼ C0 þ C1 cos hþ C2 cos 2h ð25Þ

The Karplus coefficients, Cm, identify with the first three

Fourier coefficients of the probability density in the torsion

angle obtained when transforming Eq. 25 into the reci-

procal-angle domain.

Averaging effects on J coupling constants were previ-

ously modelled by convolving Karplus curves with the

continuous Gaussian probability density function (Hoch

et al. 1985; Karimi-Nejad et al. 1994; Polshakov et al.

1995),

h3JðhÞi ¼ C0 þ C1hcos hi þ C2hcos 2hi ð26Þ

Alternatively, variance-dependent scaling was applied to

the angle-related Karplus coefficients,

hCmi ¼ FmCm; ð27Þ

such as to yield (Brüschweiler and Case 1994)

h3JðhÞi ¼ C0 þ hC1i cos hþ hC2i cos 2h ð28Þ

At any rate, the correspondingly modified Karplus equa-

tion, Eqs. 26 or 28, is subsequently used for interpreting

J values.

The scaling factors, Fm in Eq. 27, arise from applying

convolution theorems, whereby ‘folding’ the instantaneous

coupling with a probability density involves multiplying

the Karplus-curve transform (coefficients Cm) with the

probability-density transform (factors Fm) in order to yield

expectation values for the conformation averaged coupling

constant. Circular variability thus manifests as certain

scaling ratios between ‘adjacent’ Karplus coefficients, and

the ratios depend on the chosen model of torsion-angle

dynamics. Amenable to manipulation, the scaling factors

and their ratios provide a convenient and efficient way of

modelling conformation averaged coupling constants.

Scaling Karplus coefficients in the Gaussian model context

An angle distribution of Gaussian shape imposes a

Gaussian envelope on the series of Karplus coefficients in

Eq. 28 (Fig. 2). The mth Karplus coefficient subjected to

angular averaging in the Gaussian context scales with a

simple dependence on the angular order parameter,

hCmi ¼ Rðm
2ÞCm ð29Þ

At the order-parameter level, averaging the coupling constant

then stipulates scaling the Karplus coefficients C0, C1, and C2

by explicit factors of F0 = 1, F1 = R, and F2 = R4,

respectively. At the standard-deviation level (Eq. 8), scaling

factors were given by Brüschweiler and Case (1994)

generically as Fm ¼ expð�m2r2
h=2Þ, and explicitly as

F0 = 1, F1 ¼ expð�r2
h=2Þ), and F2 ¼ expð�2r2

hÞ. Figure 2

shows these relations for various degrees of circular

dispersion. Higher modes of the angular distribution

associated with scaling factors, F3, F4, etc. are not normally

discernable by applying the standard Karplus model of

J-coupling that comprises the three lowest modes only.

Scaling Karplus coefficients in the elliptic model context

The combination of nested exponential and trigonometric

functions in Eq. 10 is reminiscent of Bessel functions.

Designed for application to circular statistics, Richard von

Mises (1918) suggested probability distributions that

employ a Bessel function kernel. The von-Mises distribu-

tion later became known as the circular normal distribution

(Fisher 1993; Jammalamadaka and SenGupta 2001; Fern-

ández-Durán 2004). Where cosine and sine functions sat-

isfy rectangular boundary conditions defined in Cartesian

coordinates, Bessel functions satisfy circular or cylindrical

boundary conditions involving polar coordinates. They

form the Fourier series for the arc of a circle.

Analogous to the sine-related sinc function as the Fou-

rier transform of a rectangular profile (tophat function), the

semicircle function (compare Eq. 16),

fl ¼ ð1� ðl=proÞ2Þ1=2; 0 if l [ jproj ð31Þ

has the jinc function as its Fourier transform (Bracewell

1986, Figure 2),

Fm ¼ jincðmxÞ ¼ J1ðpmxÞ=pmx ð32Þ

where J1(x) is a Bessel function of the first kind.4 Bearing

resemblance to the power series representation for sin(x),

the series representation of J1(x) is

J1ðxÞ ¼ x=2� x3=ð224Þ þ x5= 22426
� �

� � � � ð33Þ

For convenience, the expression of Eq. 33 is usually

multiplied by 2/x to accomplish jinc(0) = 1. Notice that

the jinc series amplitude decays only as x-1/2, contrasting

the faster decay of x-1 for the sinc series. Benefitting

speedy numerical optimization, the derivative of Eq. 32 is

obtained as (Abramowitz and Stegun 1972; Spiegel and

Liu 1999)

4 Coincidentally, the same symbols, J, are being used for both Bessel

functions and NMR coupling constants. The Bessel function is

distinguished by a subscript numeral.
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jinc0ðxÞ ¼ �J2ðxÞ=x ð34Þ

Coupling-constant averaging by way of scaling coefficients

in contexts other than the Gaussian model is possible in

principle, albeit less straightforward. An analytical solution

to the Bessel function integral for the purpose of averaging

in the context of the elliptic model cannot be obtained in

closed form and typically requires an iterative approach.

Scaling factors to the Karplus coefficients that emulate

coupling-constant averaging in the framework of the

elliptic model were computed and inserted in Fig. 2 also

(see Supplementary Material). It is seen that multiplier F1

remains positive throughout the range of R. With the

elliptic model, descent in the value of F1 is steepest when

the order parameter R is highest, only to level off at around

0.18 toward full dispersion. This contrasts the strict pro-

portionality between F1 and R in the Gaussian model.

Interestingly, this lends to an interpretation by which the

magnitude difference between primary and secondary

maxima of the apparent, modified Karplus curve, which is

characterised by coefficient C1, cannot disappear entirely

upon complete rotational averaging, as it does in the

Gaussian case.

While Karplus coefficients C2 in the Gaussian context

also scale with positive factors F2 throughout, scaling as

derived for the elliptic model turns negative once

R decreases below 0.8. The negative excursion reflects the

waviness radiating from the center of the Bessel function

and accounts for the discontinuities in the angular proba-

bility density where the semicircle meets the baseline

(Fig. 2).

Scaling Karplus coefficients in the Pachler model context

Population parameters Pgþ , Pt, and Pg� for the three stag-

gered rotamers are normally calculated using linear com-

binations of trans and gauche couplings, Jt and Jg�

(Hansen et al. 1975). The corresponding conformations of

torsion angle v1 in amino acids possessing a Cb methylene

group are signified as t2g3, g2t3 and g2g3, indicating the

spatial relationship between the unique Ha atom and both

Hb2 and Hb3.

The question now arises as to what scaling factors, Fm,

would possibly represent the Pachler model. Appealing as

the concept may be, imposing conformation averaging on

the Karplus coeffients is impossible in the case of the

staggered-rotamer model. As the directions in the angle

domain are invariant, Fourier transform of an angle tri-

plicity typical of discrete probability density at three fixed

equidistant directions commands static baseline intensity at
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Fig. 2 (top panels) Semicircle function, f(h) = (1 - h2)-1/2 P(h/2),

providing angular probability density in the torsion-angle domain to

characterise conformation averaging, and its Fourier transform,

F(m) = J1(mp)/mp, the jinc function in the mode domain; both

functions scaled to unit amplitude for convenience. (bottom panels)

Gaussian function, f(h) = (2r2)-1/2 exp(-h2/2r2), providing angular

probability density in the framework by Mardia, and its Fourier

transform, F(m) = exp(-m2r2/2); both functions scaled to unit

amplitude. Arrows indicate the reciprocal relationship of (circular

or Gaussian) standard deviations with their Fourier transform

counterpart. The broader the distribution in the angle, the more

concentrated the intensity about the conformation independent mode-

0 in the co-domain, and vice versa. Circles in central and right-hand-

side panels indicate relative function values relevant to the scaling of

the first three Karplus modes, Cm, m = 0, 1, 2, and their dependencies

on variation in the order parameter, the dotted line showing the

connection. Explicit values of F(R) are provided as Supplementary

Material
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mode m = 3 in the other, reciprocal-angle co-domain,

regardless of the populations. In fact, the Fourier transform

of a discrete equidistant three-point uniform probability

distribution on the circle is a grating with identical inten-

sity at every third mode (m = 0, 3, 6, …), and zero

otherwise, which causes degeneracy between lower (m - 3)

and higher (m) trigonometric modes. All corresponding to

the zero-th mode effectively, this is consistent with the

notion that a uniform distribution in the staggered rotamers

should produce precisely that mean J coupling constant that

is signified by the respective Karplus coefficient C0 for the

coupling type in question.

The intricacies just outlined suggest that there are cer-

tain limitations to the staggered-rotamer model, and that an

iterative approach might necessitate special precautions

(see ‘‘Appendix’’).

Results

Transformation between discrete and continuous torsion-

angle distributions shall be exemplified by using 3J cou-

pling data measured by Xu et al. (1992) for the side-chain

torsions v1 in recombinant human FK506-binding protein

(FKBP) complexed with ascomycin. Comparison torsion

angles were obtained from crystal coordinates of the

FKBP/FK506 complex (PDB accession code 1FKF)

resolved at 1.7 Å (Van Duyne et al. 1991).

Pairs of 3JHa,Hb and 3JN0,Hb coupling constants available

for 31 out of the total 107 amino acids in FKBP permitted

solving for the respective v1 torsion angles. Entirely inde-

pendent of reference conformations, such as dihedral

angles derived from X-ray data, both torsion angles for all

included amino-acid residues as well as Karplus coeffi-

cients for all included J-coupling types were iteratively

adjusted by applying a self-consistency approach that

exploits parameter over-determination (Schmidt et al.

1999; Pérez et al. 2001). Best illustrated by an n-by-

m spreadsheet of Karplus functions (Eq. 28), built from

n residue entries and m coupling data per residue, the

variable torsion-angle parameters and the variable Karplus

coefficients would act on row and column elements,

respectively, in order to optimally reproduce the constant

measured values of 3J.

By optimizing all variables at once, potential bias due to

setting parameters in advance is avoided. One such factor

in the J coupling analysis is the choice of Karplus coeffi-

cients, which has previously been demonstrated critically

to affect the interpretation of 3J coupling constants in terms

of torsion angles and possible inferences regarding angular

mobility (Karimi-Nejad et al. 1994; Blümel et al. 1998).

Fixing Karplus coefficients often results in elevated order

parameters making torsion-angle ranges appear more

concentrated. Only unrestricted simultaneous fitting of all

relevant variables allows adequately to apportion the

residual fit error between those contributions from Karplus

coefficients, those from torsion-angle dynamics, and those

due to truly random uncertainty.

As side-chain related coupling constants are affected by

variation of the local topology across different amino-acid

types, the self-consistent optimization was supplemented

by amino-acid specific Karplus curve increments, DC0, in

addition to the principal angular dependencies of 3JHa,Hb

and 3JN0,Hb given by the fundamental coefficients, Cm

(Schmidt 2007a).

The 31 side-chain conformations were first subjected to a

single-rotamer search, in which three-quarters of the torsions

unambiguously converged in the vicinity of an ideal stag-

gered state, in agreement with angle values seen in the X-ray

comparison set. Possibly due to ignoring angular dynamics at

this stage, the remaining quarter of residues exhibited dis-

torted angles near energetically less plausible eclipsed states.

For convenient comparison, results from all models are

visualised as dial graphs in Fig. 3, detailed parameters are

provided as Supplementary Material.

The modelling of torsion-angle dynamics, however,

required additional variables be fit as follows: (i) the discrete

three-site jump employed two independent probability

parameters per residue (see ‘‘Appendix’’); and (ii) the con-

tinuous distribution function was generically fitted at the

level of mean direction and order parameter, from which

circular standard deviations for both Gaussian and elliptic

models were ultimately derived by calculation. Thus, each

approach involved 2 9 31 model specific mobility param-

eters, in addition to the 6 fundamental and 13 incremental

Karplus coefficients. All parameters were iterated while

continually calculating coupling constants and comparing

these with the 124 experimental values of 3JHa,Hb and 3JN0,Hb.

In a complementary manner, parameters obtained from

optimization according to one approach were eventually

transformed to those corresponding to the other approach.

Approach (i): Mean direction and dispersion parameters

from staggered-rotamer probabilities

Probabilities Pgþ and Pg� were obtained numerically for the

discrete three-point distribution model and, using Eqs. 22

and 23, respectively, were converted to apparent mean

directions, ho, and circular order parameters, R. Applying

Eqs. 9 and 15, the order parameters were subsequently

transformed into mean angular deviations in the context of

the continuous distribution models introduced. The trans-

formed parameters displayed in Fig. 3 (right-hand-side)

suggest extensive side-chain mobility, linked to compara-

tively low R values between 0.692 and 0.185 (Supplemen-

tary Material).
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Large (transformed) standard deviations hint at consid-

erable ‘leakage of order’ (disorder) in which the two minor

rotamer states are both significantly populated. For example,

the predominant trans state in Phe46 is only half populated,

while both gauche states are populated roughly equally at

around one-quarter each and, as a consequence, rM equals

94�. The most mobile side chains in Asn43, Arg13, and

the C-terminal residue Glu107, all partaking in the group

labelled ‘ambiguous’ in Fig. 3, delivered values of R so small

that the transformed Gaussian dispersion parameters resulted

in remarkably high values rM of up to 105�. Mobility

parameters calculated following Batschelet’s transformation

(Eq. 5) indicate similar trends, except that values of rB (not

shown) are generally smaller than Gaussian standard devi-

ations rM, yet larger still than the circular standard deviations

ro promoted in this investigation.
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Lys47 Lys47
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Phe99 Phe99
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Fig. 3 Dial graphs showing all results from fitting various mobility

models to 3J coupling constants for selected v1 torsion angles in

FKBP. Residues are grouped according to their predominant

staggered rotamer as indicated, or conformations are considered

ambiguous in case of divergent results. Tick marks at the top of each

dial denote the angle origin, 0�. (left) For each amino acid, crosses
show the iteratively optimized torsion angle assuming a single

rotamer state. Closed circles represent in area-proportional manner

the fitted probabilities Pgþ , Pt, and Pg� of the three discrete staggered

rotamers. Heavier and lighter shaded dial segments indicate, in

contexts of elliptic and Gaussian models, respectively, the fitted

continuous probability distributions with circular direction and

dispersion. Triangles indicate comparison torsion angles derived

from crystal structure coordinates. (right) Model parameters obtained

by transformation of the optimized parameters: Open circles indicate

transformed staggered-rotamer probabilities from continuous-model

mean torsions and order parameters. Shaded segments show corre-

sponding elliptic/Gaussian continuous model parameters as obtained

from transforming fitted staggered-rotamer probabilities. Single-

rotamer results cannot be transformed. Most noticeably, the fitted

discrete staggered-rotamer probabilities (on the left) generally trans-

form into wider apparent circular dispersions (on the right) than are

being obtained when fitting the continuous model directly. Con-

versely, the narrower fitted circular dispersions (on the left) transform

into more pronounced probabilities for the staggered main rotamer

(on the right)
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In essence, populating all three rotamer states gives rise

to excessive apparent circular dispersion parameters. This

does not, however, place constraints on the apparent mean

direction. For example, as anticipated from the symmetri-

cal disposition of both minor state populations in Phe46,

the resultant transformed mean direction came out near

ho = 180�, in agreement with the trans state seen in the

crystal structure.

If, however, precisely one rotamer state remains

unpopulated, the mean direction becomes limited in its

accessible range and, invariably, distorted torsions emerge

that must deviate from ideal staggered states. The effect

shall be demonstrated by example. Tyr82 exhibited the

highest order parameter and appeared to be the most rigid

of those side chains included in the analysis. Its fitted trans

state is practically absent (2 %), and the second minor state

converged at a lowly 20 % gauche? population, such that

the predominant 78 % gauche- population would lend to

an interpretation that this v1 torsion preferentially dwells in

the -60� state. Virtually zero population was also fitted for

the trans rotamer in Asp79, except the permuted roles of

gauche? and gauche- make the ?60� state pre-eminent in

Asp79. Importantly, however, the transformed mean

directions for both residues must deviate somewhat from

the ideal -60� or ?60� angle value, because a minor

staggered component would not otherwise arise. Indeed,

mean angles calculated from the probabilities as -47�
(Tyr82) and ?42� (Asp79), respectively, agree well with

the slightly twisted torsion angles of -55� and ?45� seen

in the crystal structure.

Surprising on another note is that even for these residues

perceived as rotationally rigid, the calculated dispersion

parameters were as high as 40� to 50�. Values exceeding

60� are perceived as extensive rotational averaging,

implying significant population of all three staggered ro-

tamers (Schmidt 1997). It is unlikely that all side chains in

FKBP should be this flexible. Clearly, although the trans-

formed mean directions look acceptable, the dispersion

values emerging from fitting the staggered-rotamer model

appear exaggerated, due likely to artificially attenuated

order parameters.

Approach (ii): Staggered-rotamer probabilities

from mean direction and dispersion parameters

In contrast, dispersion parameters obtained from fitting the

continuous model ranged only from virtually 0� (Tyr82) up

to 58.3� (Asn43), qualitatively consistent with the line-up

found with approach (i), yet considerably smaller in value.

With order parameters significantly higher between 1 and

0.596, these dispersion figures appear more plausible than

the elevated values of r derived from the fitted staggered-

state model, and mean directions are more frequently in

accord with ideal staggered states also (Fig. 3; Supple-

mentary Material).

The transformed rotamer-state populations as calculated,

using Eq. 24, from the continuous-model parameters for

the most rigid Tyr82 side chain qualitatively agreed with

results of approach (i), except for the emergence of spu-

rious negative probabilities (Fig. 4) which are being di-

cussed in connection with skew effects below.

Contrasting approach (i), which implied complete

angular revolution for the most flexible Asn43 side chain,

fitting the continuous model resulted in a preference for the

180� state, with suitably—instead of excessively—high

circular deviation (Fig. 3). Interestingly, the comparison

X-ray structure indicates v1 = -71� for conformationally

‘ambiguous’ residue Asn43.

Similar to approach (i), previously highlighted Phe46

exhibited one predominant rotamer and two equally pop-

ulated subordinate states also in the continuous-model

optimization followed by parameter transformation. This

time, however, the distribution shifted significantly in

favour of the main conformer (84 %), and the minor state

populations decreased to 8 % each. The higher order

parameter of 0.76 and smaller circular standard deviations

at around 40� with either Gaussian or elliptic model,

compared with values from approach (i) of 0.26 and 55�–

94�, respectively, look again more plausible than the

complete angle revolution implied by the discrete model

fitted previously.

Error considerations

Errors affecting the fit results are linked, first, to the reli-

ability of the experimental J coupling data and, second, to

their propagation into the fitted model parameters.

The precision of the experimental J coupling constants

was apparently limited by the digital spectral resolution Xu

et al. (1992) applied in their procedure of shifting selected

E.COSY multiplet traces against one another. Matching the

quoted 1.0 and 0.6 Hz per point for 3JHa,Hb and 3JN0,Hb,

respectively, a uniform standard error of ±0.5 Hz was

therefore applied to normalize e2
J , the J residual, in all

angle-model optimizations. The actual statistical error in

the data is likely smaller, because a correspondingly dif-

ferent coupling constant would have been found, should a

trace have been mis-aligned by just over half a data point

and subsequently subjected to re-evaluation. This provides

reason to assume that the one-sigma interval of 0.5 Hz

applied to the J data is, in fact, to be considered an upper

error limit rather. It is remarked that tightening/relaxing the

uniform standard error would merely increase/decrease the

value of e2
J , that drives the minimization algorithm, but

would not affect the best-fit parameter set as such.
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Error propagation affecting the J coupling analysis was

previously investigated by employing variance–covariance

matrix methods (Schmidt et al. 1999), which are not always

suitable for highly non-linear systems. The more robust

alternative approach applied here estimated the output fit-

parameter variation by repeat optimizations whilst adding

to all input J coupling data uncorrelated random Gaussian

noise of zero mean and 0.25-Hz standard deviation (Box

and Muller 1958). The tighter interval was chosen to

contain 95 % of the variation within one nominal J stan-

dard error. Results from 31 repetitions were collected and

variation around the optimized unmodified (noise-free) set

averaged. Averages and error margins for fundamental

Karplus coefficients, which scale directly with the input

J data, typically reproduced within the one standard-error

interval in J, i.e., C0 = 6.10 ± 0.10 Hz, C1 = -0.92 ±

0.23 Hz, and C2 = 4.57 ± 0.14 Hz for 3JHa,Hb, and

C0 = 2.25 ± 0.05 Hz, C1 = -1.34 ± 0.14 Hz, and C2 =

1.01 ± 0.17 Hz for 3JN0,Hb couplings. Discarding the

occasional record where a torsion angle converged at a

different conformational well, torsion-angle parameters of

the continuous model fluctuated by less than ±3�. Disre-

garding their intrinsic non-linearity, order parameters

appeared to vary by ±0.06 around the best-fit set. Finally,

the probability parameters of the discrete model repro-

duced within ±2 %.

Characteristic of self-consistent modelling is that dis-

crepancies in the torsion angles (RMSDh), which are

merely by comparison, do not correlate with violations of

J constraints (RMSDJ). Excluding those residues showing

the largest torsion discrepancies is insignificant for

improving the overall fit to the J coupling data and, vice

versa, omitting data causing the largest coupling discrep-

ancies is unlikely to give a better match with comparison

geometries.

Fitting single-state, discrete staggered-rotamer, and

continuous distribution models accomplished normalized

e2
J residuals of 215.6, 194.0, and 89.5 Hz2, respectively,

with RMSDJ violations of J coupling constraints of 0.66,

0.63, and 0.42 Hz. Clearly, the continuous distribution
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Fig. 4 Populations of the discrete staggered rotamers as calculated

for arbitrary mean torsion angles and for selected values of the order

parameter using Eq. 24. Mean torsion angles deviating from ideal

staggered states produce differential probability in the two minor

conformers. For example, for Tyr82, the continuous model fits order

parameter 1 and mean v1 angle -72�, away from ideal staggered -

60�, causing the apparent (transformed) minor populations to deviate

from 0 % toward 13 % for Pt, and toward -11 % for Pg� , whilst

maintaining the main-rotamer likelihood Pgþ at 99 % (also see

Supplementary Material). Roles are reversed for the minor popula-

tions in Glu61 whose v1 deviates toward the other side of -60�.

Similar applies with permuted indeces to situations with mean v1 in

the ±180� or ?60� bands. Reduced order parameters equalize the

populations, as example Asn43 shows. If R \ 0.5, negative proba-

bilities no longer emerge, regardless of mean angle. Arrows and

differing line styles indicate the effect of increasing the amplitude of

libration about the mean angle, as decreasing order parameters

manifest in an associated decrease in the main-rotamer population,

while the pivot probability for the two minor populations rises, until

all probabilities reach 1/3 eventually in the extreme of complete

rotatory averaging. The graph can be used in reversed manner, for

example, the three fitted staggered-rotamer populations equate to a

low order parameter in highly flexible Arg13 and an apparent

(transformed) circular mean direction of ?89�
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model adapted best to the experimental constraints, keep-

ing the average deviate within the 0.5-Hz error interval.

Considering that the single-state model comprises fewer

variables, both discrete models fared similarly in terms of

normalized error.

Although the model fitting does not reference any X-ray

derived torsion angles, comparison with angles in the

crystal structure revealed RMSDh discrepancies of 49.8�,

57.0�, and 48.0�, where the value for the staggered rota-

mers was calculated using transformed apparent mean

torsion values. RMSDh numbers always look larger for

protein side-chain torsions than for an analogous evalua-

tion of main-chain angles (Schmidt et al. 1999), because of

a certain likelihood for side-chain torsions to lock into

different conformations under solution and solid state

conditions. Larger angle deviations stem from those side

chains labelled ‘ambiguous’ in Fig. 3, at times yielding

conflicting torsion-angle conformations. For the three

clear-cut staggered-conformation groups, stereospecific Hb

chemical-shift assignments adjusted on-the-fly reliably

reproduced those given by Xu et al. (1992). Fluctuating

permutations were seen in repeat iterations only for the

‘ambiguous’ group (as marked in the Supplementary

Material), explaining some of the angle discrepancy with

the comparison crystal structure. The numbers corroborate

that the continuous distribution model reproduced the

comparison angles better, even though this was not a pri-

mary aim of this analysis.

Discussion

The adaptive nature of self-consistent parameter fitting, one

may argue, would impede comparison of different models

of angular motion as the effect of changing the model may

be concealed by the many variables present. However, all

models investigated employed the same number of fit

variables for modelling torsion-angle mean and dispersion,

i.e., two per residue. Other things being equal, any bias or

discrepancy perceived must be attributed to differences in

the concepts underlying the models.

Model comparison

One fundamental difference between discrete and contin-

uous angular-distribution models concerns their perfor-

mance and interpretation with respect to conformation

averaging.

In the normal distribution, the average conformation

is—by definition—the most probable state. Viewed

through ‘Gaussian lenses’, the mean torsion angle is meant

truly to exist as one of many states with finite, non-zero

probability—or lifetime, for that matter.

In the discrete model of averages over distinct states,

however, the mean conformation typically is not—actually

cannot at all be—represented by any one of the constituent

states alone and, therefore, must have vanishing probability

or lifetime. It is imperative here to realise that, conversely,

if a single constituent state represented the average struc-

ture already, then a superposition of multiple states would

be utterly obsolete. Consequently: When averaging dis-

crete states, each constituent must deviate to some degree

from the mean. Seen in the light of the discrete model, the

mean torsion angle is ‘hidden from view’ and meant to be

non-existent.

Choosing the discrete over the continuous model, the

question then arises as to how many distinct ensemble

constituents would be required for satisfactory explanation

of the data (Blackledge et al. 1993). There is no limit on

this number, however, the simpler the model, the higher its

significance.

Multiple conformations

Whenever coupling constants disagree with the most sim-

plistic and straightforward single-conformer model, equi-

libria between at least two conformers need be considered.

Unless exchange rates are sufficiently low to give rise to

distinct spectral subsets, ensembles must be treated simply

as rapidly interconverting conformations. Accounting for

such effects is the purpose of fitting, in addition to the most

probable torsion angle, a somewhat abstract order param-

eter. Its general interpretation is the extent of molecu-

lar mobility, albeit without a chance of resolving any

individual ensemble members or pinning down the time-

scale on which conformational exchange processes take

place.

Amino-acid side chains often exhibit restricted motion,

for example, exchange between only two rather than all

three staggered states. Fitting continuous models in these

situations often manifests in elevated dispersion parame-

ters, and occasionally in the artefactual inversion of the

circular mean direction. This is a consequence of applying

a unimodal model, which the continuous models typically

are, to a multimodal distribution, such as the exchange

between two clearly defined distinct conformations.

Owing to its predefined fixed angle values, the stag-

gered-rotamer model is notoriously inadequate in situa-

tions in which the torsion is topologically restricted to

non-staggered states. Proline is a pertinent example where

staggered states cannot be adequately fit. Yet, this model

is satisfactory, especially, in cases for which near-eclipsed

mean v1 angles of narrow spread emerge with the

Gaussian model, even though the 3J data compellingly

point at a staggered conformation (e.g., Ser8 and Phe99 in

Fig. 3).
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Skew-angle effects

Among those residues labelled ‘ambiguous’ in Fig. 3, the

Lys34 side-chain v1 torsion adopts in the crystal structure a

near-eclipsed, possibly conformation averaged value of

-108.2�. Bearing in mind that conformation averaging as

recorded in a crystal-structure dataset may differ in origin

from that observed in solution, the former likely involves

distinct conformations held by distinct molecules, each of

which can be of a comparatively static texture, whereas in

solution, the differing conformations are being traversed by

one and the same molecule. To this extent, conformation

averaging over molecules placed at distinct crystal lattice

positions denotes ‘space averaging’, whereas flexible mol-

ecules tumbling in solution give rise to ‘time averaging’.

Whichever way, the resultant observable disorder causes

dispersion in the angular distribution. The challenge is to

work out the relative proportions of the contributing con-

formers. The NMR data for said Lys34 (Xu et al. 1992) show

relative coupling-constant pairs in qualitative agreement

with a single principal rotamer, which can only be the g2t3 or

trans state. And yet, angle values converging away from the

ideal ±180� staggered conformer, depending on the applied

model, hint at some ‘skew’ torsion conformation in solution.

Studies on rotamericity (Schrauber et al. 1993; Carugo

and Argos 1997; MacArthur and Thornton 1999) found that

a substantial proportion of amino-acid side chains in pro-

tein structures deviate by more than 20� from ideal stag-

gered conformation, and skewness even tends to rise with

increased resolution of the crystal structure. Distorted

conformations might, in fact, be due to subtle averaging

effects over otherwise near-ideal torsion rotamers, rather

than long-lived skew-torsion-angle states, and the lowly

populated rotamers possibly become observable only with

increasing data resolution, as suggested initially.

While the Gaussian model accommodates skew simply

by shifting the location of the distribution, the effect cannot

however be readily reproduced by a discrete model that

does not exhibit density at the angle of the twist-away

torsion. Possibilities for adjusting the location of the dis-

tribution are greatly reduced with a model limited to fixed

angle values. Even though the Pachler model does not

preclude the mean location from pointing in an arbitrary

direction (Table 1), this comes at the price of high angular

disorder (small value of R), or high circular variance (large

value of r), for that matter.

Artificial superposition of staggered states to emulate

skew effects in the Pachler model invariably results in dif-

ferential probability for the two minor states, that is, a non-

zero positive probability contribution from one of the minor

states is being compensated for by an almost, yet not exactly,

equal probability of opposite sign for the other minor state

(Fig. 4). Differential probability between those minor states

depends on the distance the skew torsion angle is away from

the nearest staggered state. Compare, for example, Asp79 at

v1 = ?71� with Phe48 at near-ideal ?60�, both of which

exhibit the same low circular standard deviation and an order

parameter near 1 (Fig. 3; Supplemantary Material). The

probability difference between the minor states is negligible

for Phe48, whereas that for Asp79 amounts to more than

±10 % at the given 11� deviation in the torsion angle.

Notice how the relative populations of the minor states

reverse signs if the mean angle deviates from the ideal value

in the opposite direction, for example, in the case of Tyr26

with v1 = ?55�. At any rate, a negative state probability

encountered in the Pachler-type analysis of rotamer equi-

libria is a somewhat artefactual, model-inherent expression

of an underlying skew (non-staggered) torsion angle with

comparatively little dispersion (Fig. 4).

Pachler model

A distribution mean located away from an ideal staggered

angle commands non-zero probability not only for the pre-

dominant rotamer but also for one or both of the minor

rotameric states. Consequently, that proportion of proba-

bility which is scattered over all three rotamers corresponds

to a uniform baseline distribution on the circle, causing the

circular order parameter R to decrease noticeably. Any

spurious negative probability that may arise in the Pachler-

type analysis (Fig. 4) contributes as much to increased dis-

order as does a positive-only set of pi parameters. If negative

probabilities are not acceptable, an approach to fitting range-

bound all-positive probability parameters is devised in the

‘‘Appendix’’. However, forcing probabilities to remain

positive has the adverse effect of lowering the order

parameter, thereby artificially exaggerating the extent of

circular mobility. A high value of R can only be maintained

in the staggered-rotamer model if all but one probabilities

remain near zero, which is often impossible in practice and

also would make a three-state fit obsolete. As a consequence,

the Pachler model tends to emphasise the second moment or

dispersion of the angular distribution, and underestimates its

first moment, resulting typically in low order parameters and

comparatively higher angular dispersion.

Gaussian model

In the Gaussian distribution model, mean angle and angular

dispersion, as the first and second distribution moments,

respectively, are orthogonal parameters, permitting—in

theory—the perfect separation of effects. Both location and

dispersion parameters are somewhat coupled though,

namely by the actual set of experimental data constraints,

which themselves may not be entirely independent

observations.
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The possibility of adjusting the mean to the optimal

location, at any granularity, primarily ensures angular

variance is kept at minimum. The residual fit error is

subsequently reduced by adjusting the spread parameter.

As a consequence, the Gaussian model tends to emphasise

the first moment of the angular distribution, while second-

moment effects appear underweight, resulting in high

apparent order parameters and comparatively lower angu-

lar dispersion.

Elliptic model

The involvement of both first and second moments of the

distribution according to the elliptic model of torsion-angle

mobility by using the circular statistic suggested in this

work (Eq. 12), is a consequence of averaging on a par both

sine and cosine components of a torsion angle. Rather than

a single value as in linear statistics, two equally ranked

descriptors of direction are averaged for each torsion. Thus,

measures of direction, ho, and concentration, R, are con-

currently obtained, with no preference for one or other.

Both elliptic as well as Gaussian models yield identical

mean directions and differ only in the dispersion part. A

reassuring aspect of the elliptic-model approach to

obtaining circular variance on the basis of moments is that

the dispersion measure, derived as the complementary

order parameter (1 - R2), embodies some squared prop-

erty, which meets with general concepts of variance and

co-variance.

Conclusions

New improved approaches to the measurement of molec-

ular structure data by NMR spectroscopy increasingly

reveal ambiguities in the analysis of molecular conforma-

tion that are not always caused by lack of data or accuracy

or precision in the procedures (Schmidt and Löhr 2012).

Data interpretation then needs to consider conformational

variability that is not necessarily resolved by collecting

additional experimental data. Instead, development is

encouraged of models, and an understanding of molecular

structure, that integrate both dynamic as well as static

aspects of conformation. This seems true, especially, for

research into challenging subjects, such as partially or

intrinsically disordered protein structures (Dyson and

Wright 1998; Hennig et al. 1999; Vajpai et al. 2010).

The present work investigated and compared different

concepts of characterising torsion-angle mobility as

derived from 3J coupling constants. Given the same num-

ber of fitted variables, the Gaussian model frequently

performs statistically better than the staggered-rotamer

model (Schmidt 1997; Pérez et al. 2001). It was one aim of

this work to put those models through rigorous inspection

and to give this perception a sound basis. As the actual

molecular motion process does not depend on the model

used for data analysis, one would expect from applying

different but equally complex models to obtain similar and

consistent statements about that molecular process. After

all, the facts about the molecular process lie entirely and

exclusively in the observable experimental data. Even so,

application of those models to real data conveys perfor-

mance differences that must be attributed to the conceptual

differences between the models, originating, amongst other

reasons, from the highly non-linear character of the Kar-

plus relationship. Differing results from applying different

angle-mobility models have been observed and were

investigated previously, for example, by Karimi-Nejad

et al. (1994) and Schmidt (1997), and therefore were

expected to be seen also with the present J coupling data.

As often only one model is being applied in common

practice, differences would not arise or apparent inconsis-

tencies would go unnoticed.

Mapping between circular variance defined on the

interval [0, 2p] or [-p, ?p] and linear variance defined on

the interval [-?, ??] is best accomplished, regardless of

the concept chosen, by employing a circular order param-

eter, R. Resembling the correlation coefficient in linear

statistics, the order parameter is oftentimes more accessible

to interpretation than the variance. Furthermore, fitting of

the model-independent parameter, R, rather than the

model-dependent standard deviation, r, offers the advan-

tage of permitting to associate r with a particular model

later.

When applied to 3J coupling based analysis of amino-

acid side-chain v1 torsion angles, common measures of

standard deviation in circular data were found to yield

differing and often too large values, especially in cases

where angle distributions are notionally narrow. This is, in

part, a consequence of the limitation in the Karplus model

of 3J to only two circular modes and, thus, due to the

ignorance of higher moments that would help describe

skewness and kurtosis of a potentially multimodal circular

distribution. The primary reason for the different perfor-

mances lies, however, in the way the various models sep-

arate the properties related to aspects of first and second

moments of the circular distribution. This does not mean

that one or other is less sensible or realistic, as they are

only models. In fact, the Gaussian mean angle and the most

populated staggered rotamer often agree. However, the

need arises for a model of circular statistics that offers a

compromise between both aspects and places equal

emphasis on both moments. The elliptic model suggested

in the present investigation seems best positioned to fulfil

these requirements.
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Appendix: Fitting range-bound probability parameters

The following devises a method for optimizing sets of

interdependent probability parameters bounded on the

interval [0, 1], so as to remain meaningful in their appli-

cation to averaging distinct states.

Let the observed J coupling constant represent an

average due to a weighted superposition of three point

distributions in circular torsion-angle space, with fixed

directions and associated coupling values given as

hJi ¼ p1J1 þ p2J2 þ p3J3: ð35Þ

The three dihedral-angle states, may—but do not have to—

coincide with the staggered-rotamer conformations, in

which case the identities p1 ¼ Pgþ , p2 = Pt, p3 ¼ Pg� , and

likewise for J, apply as follows,

hJi ¼ PgþJgþ þ PtJt þ Pg�Jg� : ð36Þ

The normalising condition, Rkpk = 1, constrains the value

of the terminal probability such that only two independent

probability parameters need be determined.

However, two similarly designed parameters p1 and p2

would be mathematically and numerically interchangeable

and, importantly, would not adhere to the normalisation

condition, resulting at times in spurious negative proba-

bilities for p3. It may therefore be desirable to contain the

effective value range of each probability parameter p in an

interval [0, a], which is accomplished by parameter trans-

formation employing the logistic sigmoid,

p ¼ að1þ e�p0 Þ�1: ð37Þ

Here, an external programme control variable p0 can

conveniently be maintained on the unbounded interval

[-?, ??]. Change in the constrained variable p as a

result of change in the unconstrained variable p0 (notice the

prime) is then expressed by the derivative

dp=dp0 ¼ pða� pÞ ð38Þ

where the complementary probability ða� pÞ ¼ að1þ
e�p0 Þ�1e�p0 . Applying the chain rule, the unconstrained

probability parameter affects the model function (Eq. 35)

according to dJ/dp0 = dJ/dp 9 dp/dp0.
Let a = 1. Ideally, the primary parameter p1 would

explore the whole interval [0, 1], while the secondary

parameter p2 would fall in the reduced interval [0, 1 - p1].

Letting p2 = p2(p1) and p3 = 1 - p1 - p2, the model of

Eqs. 35 and 36 is re-defined to feature the sought auto-

normalising property as follows,

hJi ¼ p1Jgþ þ p2ð1� p1ÞJt þ 1� p1 � p2ð1� p1Þf gJg�

¼ p1 Jgþ � Jg�
� �

þ p2ð1� p1Þ Jt � Jg�
� �

þ Jg�

ð39Þ

The actual probability variables, signified in Eq. 36 by

uppercase Pi, that need be established at some stage in the

procedure are thus obtained from the constrained

probability parameters as

Pgþ ¼ p1

Pt ¼ ð1� p1Þp2

Pg� ¼ ð1� p1Þð1� p2Þ
ð40Þ

The appearance of product probabilities in Eq. 40

commands the re-definition of all derivatives with respect

to each probability, such that the change in function value J

with respect to two unconstrained probability parameters is

expressed entirely in terms of two constrained probability

variables according to

dJ=dp01 ¼ p1ð1� p1Þ Jgþ � Jg�
� �

� p1p2ð1� p1Þ Jt � Jg�
� �

dJ=dp02 ¼ p2ð1� p1Þð1� p2Þ Jt � Jg�
� �

:

ð41Þ

Expressed in terms of the three actual probabilities the

derivatives read

dJ=dp01 ¼ Pgþ 1� Pgþ
� �

Jgþ � Jg�
� �

� PgþPt Jt � Jg�
� �

dJ=dp02 ¼ PtPg� 1� Pgþ
� ��1

Jt � Jg�
� �

ð42Þ

where identities of Eq. 40 were used and, resulting from

these, ð1� p2Þ ¼ Pg�=ð1� PgþÞ. Written as

Pgþ ¼ 1þ e�p0
1

� ��1

Pt ¼ 1� Pgþ
� �

1þ e�p0
2

� ��1

Pg� ¼ 1� Pgþ � Pt

ð43Þ

the re-defined parameter transformations, exempt of all

auxiliary variables pi, exclusively require the unconstrained

parameters p01 and p02 be parsed to the optimizer engine.

It is noteworthy that the first derivative in Eqs. 41 and

42 involves two coupling differences between two pairs of

staggered-rotamer states, whereas the second derivative

involves only one such difference. This is consistent with

the notion that one fewer degree of freedom is left once the

first probability has been assigned. Assigning the second

probability obviates the need for any further coupling

information as the remaining third probability is fully

determined.

The difference couplings are given solely by the phase

offset associated with the respective coupling type

Jgþ � Jg�
� �

¼ �ð3Þ1=2ðC1 sin Dhþ C2 sin 2DhÞ ð44aÞ

Jt � Jg�
� �

¼ �ð3=4Þ1=2ðC1 sin Dhþ C2 sin 2DhÞ
� ð3=2ÞðC1 cos Dh� C2 cos 2DhÞ ð44bÞ
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where C1 and C2 are Karplus coefficients appropriate for

the coupled pair of nuclei in the v1 torsion-angle topology

considered, and Dh is the phase increment to v1 associated

with that particular coupled spin pair.

For symmetric Karplus curves, the gauche couplings Jgþ

and Jg� are identical, thereby effectively removing the first

term from the derivative dJ=dp01. If asymmetric curves are

to be considered that include a first-order sine component

(Schmidt 2007b), the above Eqs. 44a and 44b are extended

by the terms -(3)1/2 S1 cos Dh and -(3/4)1/2 S1 cos Dh
? (3/2) S1 sin Dh, respectively.
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Schmidt JM, Löhr F (2012) Refinement of protein tertiary structure by

using spin–spin coupling constants from nuclear magnetic

resonance measurements. In: Faraggi E (ed) Protein structure.

Intech, Rijeka, ISBN 979-953-307-576-0. Available from http://

www.intechopen.com/books/protein-structure
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